
Journal of  
Print  
© Krishi Sanskriti Publications 
http://  
 
 

 
 

The International Conference on Integrating Climate, Crop, Ecology–The Emerging Areas of Agriculture, Horticulture, 
Livestock, Fishery, Forestry, Biodiversity and Policy Issues  ISBN: 978-81-930585-9-6   27 

Study to Improve Thermoelectric Properties by 
Doping Mechanism using CsBi4Te6 and Half 

Heusler Bulk Materials 
Arun Kumar1, Tarun gupta2, Vinod seharawat3, Nitin kumar4,  

Susheel Kumar Upadhyay5 and Girish Dutt Gautam6 
1,2,3,4NGFCET Palwal  

5BSACET Mathura 
6JayPee University of Information Technology, Samirpur, Hamirpur (HP) 

 
 

Abstract—Thermoelectric (Peltier) heat pumps are capable of 
refrigerating solid or fluid objects, and unlike conventional vapor 
compressor systems, they can be miniaturized without loss of 
efficiency. More efficient thermoelectric materials need to be 
identified, especially for low-temperature applications in electronics 
and devices. The material CsBi4Te6 has been synthesized and its 
properties have been studied. When doped appropriately, it exhibits a 
high thermoelectric Fig. of merit below room temperature ( ZTmax; 
0.8 at 225 kelvin). At cryogenic temperatures, the thermoelectric 
properties of CsBi4Te6 appear to match or exceed those of 
Bi2ÐxSbxTe3ÐySey alloys. Moreover, nano composite approaches 
have been used to study the thermoelectric properties of other 
material systems such as CsBi4Te6 and half-Heusler phases. We 
observed a significant improvement in peak ZT of nano structured n-
type HH compound 0.8 to 1.0 respectively. Here we studied only n-
type HH compounds. The improvement of Fig. of merit is mainly due 
to the reduction of thermal conductivity. This nanostructure 
approach is applicable to many other thermoelectric materials that 
are useful for automotive, industrial waste heat recovery, space 
power generation and many other fields. 

1. INTRODUCTION 
As the increasing demand for energy rapidly, it is becoming 
more important to develop new, inexpensive materials that can 
supply sustainable and clean energy to meet the needs of the 
future. 

The phenomenon Thermoelectric was discovered more than 
180 years ago. But now a day it is a very interesting topic in 
research for clean energy. This phenomenon introduce by 
German scientist Thomas Johann Seebeck (1770-1831), who 
was born in the Estonian town Revel. Seebeck discovered that 
if the ends of two heterogeneous metals soldered at two 
junctions (hot junction and cold junction) under different 
temperature (T and T+∆T) conditions were closed. Than a 
voltage difference (∆V) developed that was directly 
proportional to the temperature difference. This phenomenon 
is referred to as the Seebeck's effect. 

This effect can be used to generate electricity, measure 
temperature or change the temperature of objects. Because the 
direction of heating and cooling is determined by the polarity 
of the applied voltage, thermoelectric devices can be used as 
temperature controllers.  

Thermoelectric effect- The term "thermoelectric effect" 
encloses three separately identified effects: the Seebeck effect, 
Peltier effect, and Thomson effect. In this paper, I only focus 
on the Seebeck effect. 

Seebeck effect- When two ends of a conductor are held at 
different temperatures, electrons at the hot junction at higher 
thermal velocities diffuse to the cold junction. Seebeck 
discovered that making one end of a metal bar hotter or colder 
than the other produced an EMF between the two ends. The 
ratio of the voltage developed to the temperature gradient 
(∆V/∆T) is related to an intrinsic property of the materials 
called the Seebeck coefficient or the thermo power. 

ΔV=SΔT 

2. THERMAL AND ELECTRICAL TRANSPORT 
PROPERTIES 

Seebeck coefficient  

Again from Boltzmann’s equation, a general expression for 
the Seebeck coefficient can be  

Fig. 1-Seebeck effect 
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From equation 1.2.5, it is clearly seen that the Seebeck 
coefficient is proportional to the expectation value of energy 
difference of the carriers and Fermi energy. This relationship 
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(a) p-type and (b) n-type. Most of these materials are complex 
alloy with dopants. Developing thermoelectric materials with 
superior performance means tailoring interrelated thermo-
electric physical parameters electrical conductivities, Seebeck 
coefficients, and thermal conductivities–for a crystalline 
system. High electrical conductivity, low thermal 
conductivity, and a high Seebeck coefficient are desirable for 
thermoelectric materials. Therefore, knowledge of the relation 
between electrical conductivity and thermal conductivity is 
essential to improve thermoelectric properties. In general, 
research in recent years has focused on developing 
thermoelectric structures and materials of high efficiency 
Koumoto K [4]. The importance of this parameter is 
universally recognized; it is an established, ubiquitous, 
routinely used tool for material, device, equipment and 
process characterization both in the thermoelectric industry 
and in research. In this paper, basic knowledge of 
thermoelectric materials and an overview of parameters that 
affect the Fig. of merit ZT are provided. The prospects for the 
optimization of thermoelectric materials and their applications 
are also discussed 

Doping mechanism in CsBi4Te6  
A broad search is under way to identify new materials with 
enhanced thermoelectric (TE) properties [7–9]. Important 
applications include cooling of electronic circuitry and 
superconducting devices. Particularly desirable are candidate 
materials that function well at or below room temperature, 
with performance characteristics better than those of the well-
known Bi22xSbxTe32ySey alloys. We have explored 
materials with more complex compositions and structures that 
would likely have complex electronic structures that could 
give rise to high TE performance. Good TE materials require 
an unusual combination of electrical and thermal properties. 
The challenge lies in achieving simultaneously high electrical 
conductivities, high TE power S, and low thermal conductivity 
k, which define the unit less TE Fig. of merit ZT 5 (S2s/k)T 
(where T is temperature). All three of these properties are 
determined by the details of the electronic structure (band gap, 
band shape, and band degeneracy near the Fermi level) and 
scattering of charge carriers (electrons or holes) and thus are 
not independent. The total thermal conductivity k also has a 
contribution from the phonon thermal conductivity, kl, such 
that k 5 ke 1 kl, where ke is the carrier thermal conductivity. 
Recently we reported that K2Bi8S13 and b-K2Bi8Se1 have 
promising TE properties and particularly low k values. The 
alkali metals play an important role in reducing the total k. 
When we moved on to investigate corresponding Te analogs 
with Cs, we obtained an unexpected result: Instead of 
Cs2Bi8Te13, we isolated CsBi4Te6. From a chemical point of 
view, this amounts to a reduction of a Bi2Te3 unit by a half-
equivalent of electrons. The added electrons, however, result 
in a complete restructuring of the Bi2Te3 framework so that 
the new structure bears no resemblance to the corresponding 
binary compound. The new compound seems to be an 
outstanding candidate for low-temperature TE applications. 

We describe here the synthesis, structure, and TE properties of 
CsBi4Te6, which, when doped appropriately, achieves a 
maximum ZT of ;0.8 at 225 K, making it the best bulk TE 
material below room temperature. We first obtained CsBi4Te6 
by reacting Cs2Te and Bi2Te3 at 700°C. Subsequently we 
devised a synthesis from the direct stoichiometric combination 
of the elements at 600°C. The material is stable in air and 
water, and melts without decomposition at 545°C. The crystals 
grow with long needle-like morphology. The direction of rapid 
growth along the needle axis is also the direction of maximum 
TE performance. CsBi4Te6 has a layered anisotropic 
structure. It is composed of anionic [Bi4Te6] slabs alternating 
with layers of Cs1 ions. The addition of one electron per two 
equivalents of Bi2Te3 is not top tactic and does not produce a 
formal intercalation compound, but causes a complete 
reorganization of the bismuth telluride framework to produce 
a new structure type. The added electrons localize on the Bi 
atoms to form Bi-Bi bonds that are 3.238 6 0.001 Å long. The 
presence of these bonds is unusual in bismuth chalcogenide 
chemistry, and it is not clear whether they play a role in the 
enhanced TE properties of the material. The [Bi4Te6] layers 
are strongly anisotropic, as they consist of one-dimensional 
(1D) [Bi4Te6] lathlike ribbons running parallel to the b axis. 
The width and height of these laths is 23 Å by 12 Å. The laths 
arrange side by side and are connected via the Bi-Bi bonds 
mentioned above. This structural feature is responsible for the 
strongly 1D needle-like appearance of the CsBi4Te6 crystals. 
The Bi atoms are octahedral surrounded either by six Te atoms 
or by five Te atoms and one other Bi atom. The degree of 
distortion around the Bi atoms is relatively small. The longest 
and shortest Bi-Te bonds are 3.403 6 0.001 Å and 2.974 6 
0.001 Å, respectively, with an average distance of 3.18 Å. The 
Cs1 ions lie between the layers, and their atomic displacement 
parameters are 1.6 times those of the Bi and Te atoms, which 
suggest that they undergo considerable “rattling” motion. Such 
a dynamic motion in the lattice can be responsible for strong 
scattering of heat-carrying phonons and leads to low k values. 
The immediate environment of Cs is a square prismatic 
arrangement of Te atoms. As obtained directly from the 
synthesis (with no deliberate attempt at doping), crystals of 
CsBi4Te6 have high room-temperature s values, ranging from 
900 to 2500 S/cm (20), and S values from 90 to 120 mV/K 
(21). At lower temperatures, S typically exhibits a maximum 
of 120 mV/K at; 240 K and then slopes toward zero at 0 K. 
The k measurements on a large number of pressed pellets 
(.97% theoretical density) or oriented ingots (22) show values 
between 1.25 and 1.85 W/mzK, for lightly and heavily doped 
samples, respectively. These values give rise to relatively high 
room-temperature ZT values of 0.2 to 0.5; these Fig. s of merit 
suggest that the material is an excellent candidate for further 
optimization via chemical manipulation (such as doping, solid 
solution, and crystal growth). On the basis of the maximum 
values of S, the band gap of CsBi4Te6 can be estimated from 

the formula E.g. 2SmaxzTmax to be between 0.05 and 0.11 eV. 
Because of the promising properties of CsBi4Te6, we pursued 
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doping studies of this material with various chemical doping 
agents. We investigated SbI3, BiI3, and In2Te3 in amounts 
varying from 0.02 to 4 mole percent. These dopants were 
chosen for the purpose of placing halide atoms in the Te 
1Department of Chemistry, Michigan State University and 
Center for Fundamental Materials Research, East Lansing, MI 
48824, USA. 2Electrical and Computer Engineering & 
Materials Science and Mechanics, Michigan State University, 
East Lansing, MI 48824, USA. 3Department of Electrical 
Engineering and Computer Science, Northwestern University, 
Evanston, IL 60208, USA 4Department of Physics, University 
of Michigan, Ann Arbor, MI 48109, USA. Doping with these 
agents does occur, but we currently do not know what sites in 
the crystal structure are being occupied. Surprisingly, doping 
with SbI3 and BiI3 produces p-doped rather than n-doped 
samples. This observation is not consistent with iodine atoms 
occupying Te sites but instead suggests Sb and Bi atoms on Te 
sites. The Sb and Bi atoms, having only five electrons, 
introduce holes in the Te-based valence band. However, 
In2Te3 can produce n-type samples (see below). Depending 
on the type and degree of doping, room-temperature S values 
between 1175 mV/K and100 mV/K were observed. CsBi4Te6 
is amenable to considerable doping manipulation, much like 
Bi2Te3, and thus higher ZT values may be obtainable. The s 
and S data were used to calculate the power factors, S2s, for 
each dopant versus temperature and doping concentration. The 
best results in this study were obtained with SbI3. The 
evolution of power factor as a function of SbI3 addition is 
shown in Fig. 3A. From these data, the optimal concentration 
seems to lie at 0.05% SbI3. This sample achieved a maximum 
power factor of; 51.5 mW/cmzK2 at 184 K. The temperature 
dependences of s and S of the best sample are shown in Fig. 
3B The S maximum was found at ;250 K. The total k of the 
doped samples of the material,;1.48 W/mzK (Fig. 3C) (24), is 
considerably smaller than that of Bi2Te3 (at;1.85 W/mzK) and 
more comparable to that of the optimized Bi22xSbxTe3–ySey 
alloy (at 1.56 W/mzK). The approximate electronic 
contribution to k was estimated using the Wiedemann-Franz 
law for metals as ke ; 0.7 W/mzK. This result suggests that the 
measured total k of this material is almost equally composed 
of the lattice and electronic contributions. Perpendicular to the 
growth axis (b axis), k was sharply lower (;0.6 W/mzK), 
which reflects the highly anisotropic nature of CsBi4Te6. The 
ZT for this sample (0.05% SbI3- doped CsBi4Te6) and that of 
the optimized commercial Bi22xSbxTe3 are compared as a 
function of temperature. Along the growth axis, the computed 
ZT values for CsBi4Te6 reach a maximum of 0.82 at 225 K 
and 0.65 at room temperature. In contrast, optimized 
Bi22xSbxTe3 p-type alloy has a peak of ZT; 0.95 at room 
temperature, whereas at 225 K, its ZT drops to 0.58. Both ZT 
curves are similar in shape, but that of CsBi4Te6 is shifted 
(by; 70 K) to lower temperatures. Because the CsBi4Te6 
samples reach optimum performance at a much lower 
temperature than does Bi22xSbxTe3, we expect that this new 
material could be exploited for low-temperature applications, 
particularly in the temperature range where Bi22xSbxTe3 

alloy is ineffective. Recent optimization work on p-type 
Bi22xSbxTe32ySey alloys claimed low-temperature (; 210 K) 
ZTmax values of 0.64 Preliminary Hall-effect measurements for 
SbI3-doped CsBi4Te6 samples show that carrier 
concentrations are on the order of 3 3 1018 to 1019 cm23 for 
samples doped at 0.1% and 0.2% SbI3. Hole motilities 
calculated from the electrical conductivity and Hall data show 
exponentially decreasing mobility as the temperature 
increases. These are substantially greater than those typically 
found in the optimized p-type bismuth telluride alloy (; 380 
cm2/Vzs) (28). At low temperatures, the mobility soars to 
5000 cm2/Vzs. The very high whole mobility could be due to 
the 1D character of CsBi4Te6 and the lack of atomic disorder 
in its crystal lattice. The carrier concentration shows a weak 
dependence on temperature, with values decreasing as the 
temperature is lowered. The carrier concentration tends to 
diminish as the doping increases away from 0.05% SbI3, the 
material with the highest power factor. For these samples, the 
carrier concentration data could be correlated with the power 
factor data; the results showed that the power factor decreased 
as the carrier concentration moved away from 1019 cm23 A 
complete TE cooling device needs both a p-type and an n-type 
version of a material to operate. Thus, an important issue to be 
addressed in future studies with CsBi4Te6 is whether n-type 
doping is possible. We have been able to show that In2Te3 
doping leads to n-type charge transport. Not only is n-type 
behavior achievable, but the maximum TE power of 2100 
mV/K occurs at;160 K, a temperature with important 
implications for the development of even lower temperature 
TEs. Although optimum levels have not yet been reached, we 
believe additional improvements in TE performance in this 
material are possible with further exploration of doping agents 
and the investigation of solid solutions such as 
CsBi42xSbxTe6, CsBi4Te62xSex, and Cs12xRbxBi4Te6. The 
latter could result in substantially lower thermal conductivities 
(as much as 30 to 50% lower), giving projected values of ZT. 
1.5. Band structure calculations for CsBi4Te6 should provide 
further insight into the electronic properties of this material. 

Doping Mechanism in HH compound 
Heusler and half-heusler phases are respectively represented 
by the general structures ' 2 M MX and MM’X, where M and 
M' are metals, and X is a sp metalloid or metal. For a majority 
of the Heusler phases, M' is either a transition metal or noble 
metal, and M is a transition metal, a noble metal, or a rare-
earth metal. The crystal structure of the heusler phase is of the 
Bi3F type (space group Fm3m) and its unit cell consists of 
four interpenetrating face-centered cubic (FCC) sublattices. 

Each of the four FCC sublattices has the same unit cell size as 
that of the heusler phase. In one unit there are 16 atoms. Two 
of the FCC sublattices, denoted by MX, form a rock-salt 
substructure. The other two FCC sublattices, denoted by ' 2 M, 
occupy equivalent sites (0, 0, 0) and (½, ½, ½). The rock-salt 
substructure MX and fcc sublattices ' 2 M are mutually 
displaced with respect to each other along their body diagonals 
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Fig. 7: XRD pattern (a) and SEM images (b-c) of arc melted and 

ball milled Hf0.75Zr0.25NiSn0.99Sb0.01 sample. 

 
(c)    (d) 

 

 
(e) 

 
(f) 

Fig. 8: Temperature dependent electrical conductivity (a), 
Seebeck coefficient (b), power factor (c), thermal conductivity (d), 
and ZT (e) of nanostructuredHf0.75Zr0.25NiSn0.99Sb0.01sample 

in comparison to a reference sample.. 

3. CONCLUSION  

In recent years, many studies have shown a significant 
enhancement of ZT in other material systems via 
nanostructuring approach to reduce the thermal conductivity 
by scattering phonons more effectively than electrons at 
interfaces in super lattices and in bulk materials, such as lead 
antimony silver telluride (LAST) alloys, and skutterudites 
with an operating temperature up to 6000C. We have been 
pursuing for applications at around 10000C, such as for radio-
isotope thermoelectric generators (RTGs) used in space 
missions, The ZT enhancement is due to a large reduction in 
the thermal conductivity while maintaining the electron 
transport properties material by increasing the power factor. 
Moreover, a modulation doping technique is applied in ZnO 
alloys to improve the power factor by increasing the mobility. 
The increase in mobility is due to reduced ionized and 
unionized impurity scattering by spatial separation of doped 

carriers. Some of the points show that increasing Fig. of merit 
of ZnO and HH material with doping mechanism. 

1) For CsBi4Te6 samples, the electrical conductivity and 
Seebeck coefficient increased with increasing 
temperature. As a result the power factor is increase. At 
1173K, the highest power factor of ~9.31×10-4 Wm-1K-2 
measured. Moreover, the thermal conductivity rapidly 
decreases with increase in temperature. 

2) The electrical conductivity and Seebeck coefficient both 
increase with decreasing the antimony doping. This could 
be due to a decrease of carrier concentration with 
decreasing antimony doping. As a result, the optimized 
power factor is increase. Moreover, the thermal 
conductivity also decreases with decreasing the antimony 
doping, which is also an effect of carrier concentration, 
giving peak ZT of 1.0 at 700oC in nanostructured sample 
of Hf0.75Zr0.25NiSn0.99Sb0.01 composition, which is about 
20 % improvement in comparison to the previously 
reported peak ZT value.  
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